

Second ECRA Chair Scientific Event 9th-10th November 2016 – Mons (Belgium)

ECRA Chair research activities on CO₂ Capture, Purification and Conversion

Dr Lionel DUBOIS

Scientific Coordinator

Chemical & Biochemical Process Engineering Unit

lionel.dubois@umons.ac.be

General framework of the ECRA Chair

University of Mons Dr Lionel Dubois | Second ECRA Chair Scientific Event – Mons – 09/11/2016

ECRA Academic Chair Timeline

Works of undergraduate students

→ « Purification of rich-CO₂ flue gases coming from oxy-fuel cement kilns – Water elimination by adsorption »
 Pol BLANCHARD & Ilyas ZARIOH
 Bachelor 3 student project, Thermodynamics Unit, May 2015

→ « Experimental study of CO₂ absorption into amine(s) based solvents: application to cement flue gases coming from partial-oxyfuel kilns » Guillaume PIERROT Master thesis, Chemical and Biochemical Process Engineering Unit, May 2015

→ « Modeling and optimization of PSA processes for the treatment of gaseous effluents rich in CO₂ » Nicolas DEBAISIEUX (UMONS) Master thesis, Thermodynamics Unit, June 2016

 → « Technical, economical and environmental evaluations of CO₂ capture techniques » Lucas LE MARTELOT (ECOLE SUPERIEURE DE CHIMIE ORGANIQUE ET MINERALE (ESCOM), Compiègne (France))
 Master thesis, Chemical and Biochemical Process Engineering and Thermodynamics Units, August 2016

ECRA Chair presentations agenda

Modeling and simulation of post-combustion CO₂ capture process using demixing solvents applied to cement flue gases by Seloua Mouhoubi

Capture & Purification processes applied to CO₂ derived from cement industry *by Sinda Laribi*

Simulations of various configurations of the post-combustion CO₂ capture process applied to a cement plant flue gas *by Lionel Dubois*

-----Question phase 1-----

Methodological selection of CO₂ conversion pathways: First outlook of technicoenvironmental assessment by Remi Chauvy

CO₂ conversion into methanol by Nicolas Meunier

-----Question phase 2-----

Second ECRA Chair Scientific Event 9th-10th November 2016 – Mons (Belgium)

Modeling and simulation of post-combustion CO₂ capture process using demixing solvents applied to cement flue gases

Ir Seloua MOUHOUBI

PhD Student

Chemical & Biochemical Process Engineering Unit seloua.mouhoubi@umons.ac.be

General framework of the ECRA Chair

University of Mons Ir Seloua Mouhoubi | Second ECRA Chair Scientific Event – Mons – 09/11/2016

Outline

1 CO₂ capture by absorption-regeneration

Context of the study

CO₂ capture using demixing solvents

Conclusion and future works

1. CO₂ capture by absorption-regeneration

1/2

1. CO₂ capture by absorption-regeneration

• Researches on post-combustion CO_2 capture \longrightarrow MEA conventional process

MEA conventional process

2/2

phase phase Blend of separation CO₂ rich Solvent amines phase University of Mons Ir Seloua Mouhoubi Second ECRA Chair Scientific Event – Mons – 09/11/2016

New technologies to reduce the capture cost *—* Demixing solvents

2. Context of the study

Demixing concept

11

2. Context of the study

IFP Energies Nouvelles DMX process

2/2

≈ 40% decrease of the regeneration energy comparing to MEA 30 wt%

3. CO₂ capture using demixing solvents

1/2

3. CO₂ capture using demixing solvents

2/2

Lack of data on demixing solvents in the literature

No Aspen simulation with the demixing solvents

Aspen plus absorption- regeneration process flowsheet

University of Mons Ir Seloua Mouhoubi | Second ECRA Chair Scientific Event – Mons – 09/11/2016

4. Conclusion and future works

Thank you for your attention

References

-Gomez, A., Briot, P., Raynal, L., Broutin, P., Gimenez, M., Soazic, M., Saysset, S. ACACIA Project – Development of a Post-Combustion CO 2 Capture Process . Case of the DMX TM Process, 69(6), 2014.
-Jiafei, Z. Study on CO2 Capture Using Thermomorphic Biphasic Solvents with Energy-Efficient Regeneration. Dortmund, 2013.
-Raynal, L., Alix, P., Bouillon, P. A., Gomez, A., Le Febvre De Nailly, M., Jacquin, M., Trapy, J. The DMX TM process: An original solution for lowering the cost of post-combustion carbon capture. Energy Procedia, 4, 779–786, 2011.
-Shi, F., & Morreale, B. Novel Materials for Carbon Dioxide Mitigation Technology. 2015.

Second ECRA Chair Scientific Event 9th-10th November 2016 – Mons (Belgium)

<u>Capture and purification processes</u> applied to CO₂ derived from cement industry

Ir Sinda LARIBI

PhD Student

Chemical & Biochemical Process Engineering Unit

sinda.laribi@umons.ac.be

General framework of the ECRA Chair

Considered combustion technologies

<u>PART 1:</u> CO_2 purification process (de-SO_x & de-NO_x) applied to full oxy-fuel combustion

Flowsheet of the Sour-compression Unit (SCU)

Modelling characteristics:

- Aspen Plus V8.6
- ELEC-NRTL model for electrolyte systems
- Rate-based calculations in the contactors
- > Flue gas compositions from ECRA oxyfuel combustion simulations.

New chemical mechanism considered

➢ pH influence: Reactions selected for 1≤pH≤4

University of Mons Ir Sinda Laribi | Second ECRA Chair Scientific Event – Mons (Belgium) – 09/11/2016

Interaction effect on the simulation results

Liquid phase composition analysis: 1≤pH≤4

Gas phase composition analysis:

- Interaction effect: SO₂ abatement ratio /
- Same NOx abatement ratio for the mechanisms with and without interactions.

Conclusions & prospects of the SCU

<u>PART 2:</u> Post-combustion CO₂ capture process applied to partial oxy-fuel combustion

Absorption-regeneration process

Post-combustion capture: absorption-regeneration in amine based solvents.

Lab scale: experimental results of the **Screening of solvents**

Lab scale tests of the solvents absorption performances. \succ

Master thesis G. Pierrot, 2015.

Micro-pilot tests of the best solvents screened

University of Mons Ir Sinda Laribi | Second ECRA Chair Scientific Event – Mons (Belgium) – 09/11/2016

Micro-pilot tests of the best solvents screened

- \succ Micro-pilot tests \rightarrow Absorption-regeneration tests using the micro-pilot unit for the best solvents screened. 25.9°C **T**₁₃
- \geq Temporal data acquisition from all the sensors (temperature, pressure, gas and liquid flowrates, etc).
- Liquid phase analysis: **Total Organic Carbon (TOC)** analyzer in terms of Total and Inorganic Carbons (TC and IC) to measure the CO_2 loading of the solution. pH measurements of the liquid solution.
- \succ Gas phase analysis: **IR analysers** to quantify the absorption ratio and CO₂ absorbed flow rate. T_{14}

MEA 30% ,y_{CO2, in}= 40%

Micro-pilot scale: experimental results

> Temporal evolutions of $y_{CO2,in}$, $y_{CO2,out}$, $y_{CO2,regen}$ and A for MEA 30% at $y_{CO2,in}$ = 40%

University of Mons Ir Sinda Laribi | Second ECRA Chair Scientific Event – Mons (Belgium) – 09/11/2016

Micro-pilot scale: experimental results

> Comparison of the temporal evolutions of absorption performances at $y_{CO2, in} = 40\%$

$$A (\%) = \frac{Gin \ y_{CO2,in} - Gout \ y_{CO2,out}}{Gin \ y_{CO2,in}} \ 100$$

Internship L. Le Martelot, 2016.

Micro-pilot scale: experimental results

Evolution of the solvents regeneration energy (E_{regen}) with increased CO₂ content in the gas to treat

A= ± 90%

y _{CO2, in} (%)	L (l/h)	G (l/h dry)
20	8	1030
30	11	1030
40	14	1030
50	16	1030
60	19	1030

When y_{CO2, in} increases, E_{regen} decreases

Comparison E_{regen} EXP/SIM

Internship L. Le Martelot, 2016.

Purpose of simulations

Modelling Characteristics:

- Aspen Hysys V8.6
- Acid gas package
- Thermodynamic models: Peng-Robinson (gas) and e-NRTL (liquid)
- Solvent: MEA 30%
- Reactions sets included in the package (validated by literature)

Simulations for different CO₂ contents in the gas to treat:

- Base case: flue gas from Brevik (y_{CO2},in = 20.4 mol.%)
- Other cases: simulations of partial oxyfuel combustion for high y_{CO2} (compositions provided by ECRA).

Flowsheet of the simulations

Simulations results: E_{regen} = f(y_{CO₂,in})

Results for the tested cases:

	Base case	Case 1	Case 2	Case 3	Case 4
y _{co2,in} (%)	20.4	31	44.1	51.44	62.03
E _{regen} (GJ/ t CO ₂)	3.39	2.96	2.56	2.48	2.30
E _{regen} saving / base case		12.61%	24.31%	26.79%	31.99%
$\alpha_{CO_2,rich}$	0.508	0.536	0.562	0.557	0.590
$\alpha_{CO_2,lean}$	0.198	0.232	0.264	0.259	0.285

University of Mons Ir Sinda Laribi | Second ECRA Chair Scientific Event – Mons (Belgium) – 09/11/2016

Conclusions & prospects of the post-combustion capture

Design and optimize CO₂ capture process for re-use &

E_{tot} of the global process.

Thank you for your attention. Questions?

PhD Student – ECRA Academic Chair Chemical and Biochemical Process Engineering Unit Faculty of Engineering - University of Mons (Belgium) <u>sinda.laribi@umons.ac.be</u>

Second ECRA Chair Scientific Event 9th-10th November 2016 – Mons (Belgium)

Simulations of various configurations of the post-combustion CO₂ capture process applied to a cement plant flue gas

Dr Lionel DUBOIS

Scientific Coordinator

Chemical & Biochemical Process Engineering Unit

lionel.dubois@umons.ac.be

General framework of the ECRA Chair

University of Mons Dr Lionel Dubois | Second ECRA Chair Scientific Event – Mons – 09/11/2016

Post-combustion CO₂ capture

Conventional process:

Ordres de grandeur des différentes dépenses énergétiques (thermiques et électriques) du procédé conventionnel opérant à la MEA [Th. Neveux, 2013]

University of Mons Dr Lionel Dubois | Second ECRA Chair Scientific Event – Mons – 09/11/2016

Post-combustion CO₂ capture

Improvements of the process:

Process configurations

Improvements of the process:

Promoting absorption

thanks to temperature levels adjustments

B

Promoting energy integration

thanks to enhancement of the heat exchanges between the fluids

Promoting heat recovery

thanks to heat quality adjustments

Classification des modifications individuelles de procédés (Le Moullec, Neveux, Hoff, et Chikukwa, 2013)

Modelling Characteristics:

- Aspen Hysys V8.6
- Acid gas package
- Thermodynamic models: Peng-Robinson (gas) and e-NRTL (liquid)
- Reactions sets included in the package (validated by literature)

→ Simulations for different process configurations & for 3 solvents (MEA, PZ & MDEA+PZ)

Process configurations

Parametric study

Type of variable	Conventional	RSR	SSF	LVC	RVC
Flow rate ratio	(L/G)	(L/G)	(L/G)	(L/G)	(L/G)
Level	Injection level into the stripper	Re-injection level into the absorber	Injections level of the cold solution into the stripper Injections level of the preheated solution into the stripper	-	_
Temperature	-	Re-injection temperature into the absorber	-	-	-
Flow fraction	-	Re-injected fraction	Split fraction	-	-
Pressure	-	-	-	Flash pressure	Flash pressure

→ Each parameter varied separately in a first step and then cross variation in a second step

Simulations results

Summary of the results for the three solvents

→Lower E_{regen} with MDEA 10 wt.% + PZ 30 wt.%
 →LVC and RVC configurations leading to the minimum of E_{regen} (heat recovery process modifications)

Conclusion & Perspectives

- Interest of alternative process configurations
- Heat recovery modifications (LVC/RVC) to \downarrow E_{regen}
- PZ-based solutions lead to the lower E_{regen} values
- In progress with:
 - Other process configurations (e.g. intercooling)
 - Other solvents (e.g. demixing solvents)
 - Other cement flue gas (partial oxy-fuel = high y_{co2})
 - Etc.

Thank you for your attention! <u>Questions?</u>

General framework of the ECRA Chair

CO₂ Conversion: Selection of routes and application to methanol

Ir Remi Chauvy Ir Nicolas Meunier

Ph.D. Students

University of Mons - Faculty of Engineering

Thermodynamics Department

Remi.chauvy@umons.ac.be

Nicolas.meunier@umons.ac.be

Methodological framework

Identification of the CO₂ conversion routes

Up to date:

- 60 start-ups, 90 projects, 25 Research Centers referenced
- Over **30 routes** identified
 - Final CO₂-based products
 - Technologies of conversion
- Large number of processes and chemical reactions at different levels of maturity and performances.

Ref.: https://www.google.com/maps/d/viewer?mid=zc9HSeNKIBAs.kekirE1Q9t1c

STEP 1: Pre-selection

Initial assessment: Qualitative study

- Reduction of the panel based on:
 - **Timeframe to deployment:** short to mid-term period, set at 10 years
 - Level of maturity: use of the Technology Readiness Level (TRL): threshold of TRL 6
 - Size of CO₂ utilization: evaluated using the specific mass, i.e. the amount of CO₂ which is necessary to produce one ton of a product based on the stoichiometry of the chemical reaction, and the world production in ton per year.
- Short list of about 10 CO₂-based alternatives

56

STEP 1: Pre-selection

Initial assessment: Level of maturity & timeframe to deployment

STEP 1: Pre-selection

Initial assessment: Results

Shortlist of CO₂ conversion options for the cement industry

CO ₂ -based compound	CO ₂ -conversion process	Conventional production		
Calcium carbonates	Mineralization (mineral carbonation)	Extraction (mining)		
Ethanol	Microbial process	Hydration of ethylene; Fermentation		
Formic acid	Electrochemical reduction Electrolysis	Synthesis from methyl formate		
Methane	Catalytic hydrogenation	Upgrade of raw natural gas		
Methanol	Catalytic hydrogenation	Steam reforming of natural gas		
Microalgae	Biological process	NA		
Sodium carbonates	Mineralization (mineral carbonation)	Solvay Process; Use of the mineral trona		

Multicriteria assessment: Criteria and indicators

Definition of the criteria and indicators

Criterion		Indicator
	i.	Level of maturity
Maturity of the process	ii.	Timeframe to deployment
	iii.	Risks and uncertainties (SWOT matrix)
	i.	Size of the market
Economic notontial	ii.	Market competition with other technologies
	iii.	Economic viability (literature review)
	iv.	Energy costs
CO reduction notantial	i.	Specific mass of CO ₂
CO ₂ reduction potential	ii.	CO ₂ avoidance potential
Environmental, health and	i.	Initial environmental assessment
safety performance		health and safety considerations
Energetic performance and	i.	Energy requirements
energetic performance and	ii.	Operating conditions, (T, P, kinetics) and conditions of
		CO ₂ feedstock (concentration, purity)

Multicriteria assessment: Scoring guide for the double weighted matrix

Criterion	Indicator	Definition	Method for the evaluation		Scale		Score
				TRL6			1
				TRL7			2
	Technological maturity	Level of maturity and performances	Use of the Technology Readiness	TRL8			3
			Level (TRL)	TRL9			4
				Commercially available			5
				5 to ≤ 10 years			1
	Timeframe to	Estimated time needed to reach commercial technological maturity		< 5 years			2
Maturity of	deployment		Literature review	Commercially available			3
			Use of a SWOT matrix	Risk matrix with the scores associated			s associated.
the process		How risks and uncertainties may impact					
	Risk and Uncertainty	the industrial expansion and the dynamic of growth		Final score calculation: Average of the scores: truncation			
			Development of a risk matrix for evaluation	High	3	2	1
				Consequences Medium	4	3	2
				Low	5	4	3
					Low	Medium Probability	High

Multicriteria assessment: Construction of the double weighted matrix

				Alternative 1		Alternative 2	
Criteria	Weight	Indicators	Weight	Score	Weighted	Sc	Co x yy
	Wcrit	maicators	Wind	Sc	Sc x W _{ind}		SC X W _{ind}
Maturity of the process		Technological maturity					
		Timeframe					
		Risk and uncertainty					
				Total			
Economic potential		Size of the market					
		Competiveness with other					
		technologies					
		Economic viability					
		Energy costs					
				Total			
CO ₂ reduction potential		Specific mass of CO ₂					
		CO ₂ reduction potential					
				Total			
Environmental, health and		Environmental notential					
safety performance		Environmental potential					
		Health and safety					
				Total			
Energetic performance &		Energy requirements					
operating conditions		Encisy requirements					
		Operating conditions	NA				
		Conditions on inlet CO ₂	NA				_
				Total			
		Total score (TSc)					
		Total weighted score (TWSc)					
		FINAL SCORE					
		Solution of inter					

Multicriteria assessment: Construction of the double weighted matrix

Multicriteria assessment: Results and discussion

Ranking of CO₂ conversion options for the cement industry

CO₂ Conversion: Application to methanol

Methanol Utility & Applications

Key points:

- ✓ Liquid at ambient condition (ease of storage)
- ✓ High energy density
- ✓ Hydrogen mass balance methanol vs. methane
- ✓ Global demand of 70 million tons/year in 2015
- ✓ Generates more than \$55 billion/year and creates over 90,000 jobs

Applications:

- Energy (Automotive & Marine fuels, Biodiesel, Dimethyl ether (LPG), ...)
- Chemicals (Formaldehyde, Acetic acid, Dimethyl ether (adhesives), Solvents, ...)
- Waste Water Treatments (Denitrification)

Methanol Utility & Applications

Methanol Rally Racing Junior WRC 2013 - Greece

Beyond Oil and Gas: The Methanol Economy

Second Updated and Enlarged Edition

The Methanol Economy George A. Olah

CO₂ Methanol Plant (Carbon Recycling International – CRI) Svartsengi, Iceland

GreenPilot Boat (Stela Line) Sweden

Thermodynamics & Kinetics

Reactions

 $\begin{cases} CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O \\ CO + 2H_2 \Leftrightarrow CH_3OH + H_2O \\ CO_2 + H_2 \Leftrightarrow CO + H_2O \end{cases}$

$$r_{CH_{3}OH,A_{3}}^{\prime} = \frac{k_{ps,A_{3}}^{\prime} K_{CO} \left[f_{CO} f_{H_{2}}^{3/2} - f_{CH_{3}OH} / \left(f_{H_{2}}^{1/2} K_{p1}^{0} \right) \right]}{\left(1 + K_{CO} f_{CO} + K_{CO_{2}} f_{CO_{2}} \right) \left[f_{H_{2}}^{1/2} + \left(K_{H_{2}O} / K_{H_{2}}^{1/2} \right) f_{H_{2}O} \right]} \\ r_{H_{2}O,B_{2}}^{\prime} = \frac{k_{ps,B_{2}}^{\prime} K_{CO_{2}} \left[f_{CO_{2}} f_{H_{2}} - f_{H_{2}O} f_{CO} / K_{p2}^{0} \right]}{\left(1 + K_{CO} f_{CO} + K_{CO_{2}} f_{CO_{2}} \right) \left[f_{H_{2}}^{1/2} + \left(K_{H_{2}O} / K_{H_{2}}^{1/2} \right) f_{H_{2}O} \right]} \\ r_{CH_{3}OH,C_{3}}^{\prime} = \frac{k_{ps,C_{3}}^{\prime} K_{CO_{2}} \left[f_{CO_{2}} f_{H_{2}}^{3/2} - f_{CH_{3}OH} f_{H_{2}O} / \left(f_{H_{2}}^{3/2} K_{p3}^{0} \right) \right]}{\left(1 + K_{CO} f_{CO} + K_{CO_{2}} f_{CO_{2}} \right) \left[f_{H_{2}}^{1/2} + \left(K_{H_{2}O} / K_{H_{2}}^{1/2} \right) f_{H_{2}O} \right]} \end{cases}$$

Carbon monoxyde (CO) and water also have an influence on the methanol conversion yield !

Thermodynamics & Kinetics

Methanol Catalysts

CuO/ZnO – type catalysts:

- Typically CuO/ZnO/Al₂O₃
- Firstly designed for **pure CO** conversion
- Promoters required to enhance the selectivity of pure CO₂ conversion
- Collaboration with the European School for Catalysts, Polymers and Materials of Strasbourg (ECPM)
- ✓ Elaboration of **new generation** catalysts
 (<u>ex</u>: CuO/ZnO/ZrO₂)
- Promising preliminary tests !

CuO/ZnO/Al₂O₃ catalyst

Methanol Catalysts

Deactivation pathways:

- Very sensitive to all common deactivation problems:
 - ✓ Sensitive to **thermal sintering** above 180°C
 - Sensitive to coke deposition
 - Sensitive to sulfur poisoning (H₂S and SO_x)
 - Sensitive to water poisoning
- ✓ Generally, this kind of catalysts has a lifetime of **3 years**
- ✓ Very important for **OPEX** considerations !
- ✓ No possible recycling of catalysts → Metal recovering !

71

Understanding the process

Methanol Conversion Process
On the path of *optimization*

<u>Main purposes:</u>

- Ensure a constant methanol purity stream (currently <u>99 mol%)</u>
- Maximize the **productivity** of the installation
- Improve the performances of catalysts
- Reduce the CAPEX and OPEX of the methanol conversion process

Sensitivity analysis:

- Pressure of the reactors
- Size of the reactors
- Temperature of the flash
- Purge ratio
- Sizing of the distillation column
- Innovative alternative configurations !

Energetic factors:

- Electrical consumption
- Heat demand

Economic factors:

- CAPEX & OPEX
- Incomes

Understanding the process

Methanol Conversion Process

University of Mons Remi Chauvy – Nicolas Meunier | Second ECRA Chair Scientific Event – Mons – 09/11/2016

The Upgraded Process Simulations with Aspen Plus & Economics v8.4. 80 bar - 230°C 80 bar – 230°C CO2-H1 **Adiabatic** Isotherm first reactor second reactor CO2-H2 $\eta \cong 21\%$ $\eta \ge 99\%$ 19,000 Nm³/h CO₂ CO2-C1 H_2/CO_2 ratio of 3 COMP-1 EX-2 EX-1 Catalytic Block S6 S13 COMP-2 COOLER S2 Purge Flare SPLIT S4 CH₃OH FLASH-1 S8 H_2O VALVE 1 bar Ēκ S3 **Separation Block** $T_{reb} \cong 99^{\circ}C$ Methanol Conversion Process

University of Mons Remi Chauvy – Nicolas Meunier | Second ECRA Chair Scientific Event – Mons – 09/11/2016

CAPEX & OPEX Estimations

CAPEX estimations:

- The upgraded process is designed to treat 35% of the CO₂ emissions coming from a 3,000 tpd clinker cement plant
- The global CAPEX of the upgraded proces is estimated to reach **21,000 k**€
- **39%** (i.e. 8,300 k€) dedicated to the purchase of the equipment

With the **upgrades** in the process design:

✓ Reduction of the CAPEX by **12%** !

CAPEX estimations (equipment)

CAPEX & OPEX Estimations

OPEX estimations:

- The OPEX related to our upgraded process are currently estimated to reach 18.6 €/ton CO₂ converted (i.e. 28 €/ton CH₃OH produced)
- The OPEX estimations show that more than 69% (i.e. 4,065 k€/year) of the energy expenses are dedicated to the reboiler heating
- The replacement of the catalyst accounts for 4% of the global OPEX

With the **upgrades** in the process design:

- ✓ <u>Reduction of the heat demand by 20 40% !</u>
- ✓ Reduction of the electricity duty by over 70% !

		k€/year	€/ton CO ₂	€/ton CH ₃ OH
Electricity	1st Compr.	1,036	5.1	7.7
	2 nd Compr.	576		
Heat	Steam	4,065	12.8	19.3
Deprec.	Catalyst	225	0.7	1.1

OPEX estimations

Prospects

- Investigation of modifiers to improve catalyst performances and stability (with the European School for Catalysts, Polymers and Materials of Strasbourg)
- Experiments on several CuO/ZnO shaped catalysts with CO₂/H₂ mixtures on our homemade semi-pilot installation
- > Check and Update of the kinetic data related to catalysts
- Better optimization of the methanol conversion process (CAPEX & OPEX)
- Influence of SOx and NOx on catalyst performances, stability and aging
- Life Cycle Analysis (LCA) of the methanol conversion process (with Remi Chauvy)
- Propose an environmentally friendly, integrated and optimized CO₂ purification and conversion process applied to the cement sector !

78

Environmental assessment

Background information

• Life Cycle Analysis (LCA) based on ISO 14040 & 14044:

79

Environmental assessment Background information

- **Functional unit**: Conversion of 1 ton of CO₂ into methanol via catalytic hydrogenation
- System boundaries:

University of Mons Remi Chauvy – Nicolas Meunier | Second ECRA Chair Scientific Event – Mons – 09/11/2016

Environmental assessment First results

Sensitivity analysis

Influence of the production of hydrogen on the global warming impact category for the conversion of 1 t of CO₂

Environmental assessment First results

Impact assessment for the conversion of 1 ton of carbon dioxide

Relative contribution on the selected impacts categories

Environmental assessment Discussion

- Up to date: <u>no straight conclusion</u> can be drawn
- Need to implement:
 - Construction and decommissioning of the infrastructures and equipment,
 - The use of the catalyst,
 - The environmental impact of the downstream process, i.e. linked to the capture and purification of the carbon dioxide from a cement plant.
- These first results tend to demonstrate that this process may have an environmental benefit regarding the global warming

Conclusion and prospects

- An original method to select most suitable CO₂ conversion pathways in the framework of the ECRA Academic Chair
 - Two-step method
 - Multicriteria assessment
 - Original score system
 - Double-weighted matrix

- Study and simulation of the selected processes under Aspen Plus
 - Process design and economics (OPEX / CAPEX) (Aspen Economics)
 - Environmental assessment and impacts characterization (SimaPro)
 - Integration and optimization

from CO_2 to energy

Thank you for your attention **Questions?**

Ir Remi Chauvy **Ir Nicolas Meunier**

Ph.D. Students

University of Mons - Faculty of Engineering

Thermodynamics Department

Remi.chauvy@umons.ac.be

Nicolas.meunier@umons.ac.be

ECRA ACADEMIC CHAIR Purification CO2 Oxycombustion Conversion FROM CO₂ **TO ENERGY**